Баллистический транспорт в полупроводниках и субмикронных приборах

Электрон при взаимодействии с электрическим полем переходит в возбужденное состояние, затем он возвращается к равновесию в результате взаимодействия (столкновений) с различными дефектами. Чаще всего для этого достаточно одного-двух столкновений. Отсюда можно заключить, что время релаксации (за которое возбуждение электрона уменьшается в раз) порядка времени, необходимого для прохождения длины свободного пробега электрона,

. (1.3.1)

Известно, что в общем случае время релаксации есть функция энергии. Напомним, что существуют два времени релаксации: - время релаксации по энергии и - время релаксации по импульсу, причем, так как ,

. (1.3.2)

Это означает, что размеры активной области нужно сравнить с этими длинами релаксации. Кроме того, отметим, что в процесс включился эффект увеличения дрейфовой скорости за времена менее , что привело к увеличению и, следовательно, возникновению явления, которое мы назвали пространственный overshoot. Другими словами, ни контакты, ни дефекты кристалла не успевают нарушить обычного движения электрона, что похоже на свободное движение тела в классической физике.

Рассмотрим зависимость и от энергии электрона. На рис. 1.14, а приведена зависимость интегральной частоты (темпа) рассеяния от энергии электрона, на рис. 1.14, б - скорость, которую может достичь электрон в центральной долине. Штриховая линия соответствует параболической долине, откуда и взято значение эффективной массы, необходимой для расчета. Точка 1 - энергия оптического фонона, точка 2 - энергия междолинного перехода. Понятно, что высокую скорость могут получить электроны, обладающие энергией ниже энергии оптических фононов и междолинного перехода. Из рисунка хорошо видно, что в первом случае мы получим скорость не выше см/с и порядка 108 см/с во втором. Последний случай, конечно, более интересен для практики.

Рис. 1.7 Зависимости интегральной частоты столкновений в Г-долине (а) и скорости электронов (б) от энергии электронов [6]

Теперь нам нужно отыскать наилучший путь достижения такого состояния электронной системы, когда энергия электронов была бы чуть меньше энергии междолинных переходов, а скорость и энергия изменялись вначале как можно более резко. Для этого имеет смысл рассмотреть возможность влияния электрических полей различной конфигурации на энергию и скорость электрона.

Предположим, что время релаксации по импульсу и эффективная масса остаются постоянными для энергий, меньших энергии междолинных переходов. Кроме того, как обычно, считаем, что . С этими предположениями для нахождения связи между и Т можно снова использовать классические релаксационные выражения или уравнения баланса усредненных импульса и энергии (1.1.2) и (1.1.3).

Если электрическое поле во время движения носителя заряда (случай overshoot) остается постоянным, расстояние, пройденное ими за время Т, записывается, как мы уже зафиксировали, в виде

. (1.3.3)

В случае же баллистического движения (предполагая включение очень короткого импульса электрического поля в самом начале движения) пройденное расстояние будет равно

Перейти на страницу: 1 2 3

Прочтите также:

Разработка системы нумерации абонентских линий
Прежде чем создавать системы связи со всем имеющимся оборудованием, необходимо произвести расчеты, опираясь на количество абонентов. Однако здесь нам уже необходимо рассматривать абонен ...

Расчет характеристик типового радиотехнического звена
В результате изучения дисциплины "Радиотехнические цепи и сигналы" мы должны знать и уметь использовать: математические модели сообщений, сигналов и помех; методы форми ...

Сети передачи дискретных сообщений
Техника передачи дискретных сообщений играет все большую роль в жизни человеческого общества. Без нее немыслимо создание современных автоматизированных систем управления для различных от ...

Основные разделы

2020 © Все права защищены! >> www.techeducator.ru