Современная тенденция развития АЦП и ЦАП состоит в увеличении скоростей и разрешающих способностей обработки сигналов при уменьшении уровня потребляемой мощности и напряжения питания. Современные преобразователи данных в основном работают на напряжениях питания ±5В (двуполярный источник питания), +5В или +3В (однополярный источник питания). В действительности, число устройств с напряжением питания +3В быстро увеличивается вследствие появления для них большого числа новых рынков сбыта таких приборов, как цифровые камеры, видеокамеры и телефоны сотовой связи. Эта тенденция создала множество проектных и конструкторских проблем, которым не придавалось значения в разработках более ранних преобразователей, использовавших стандартное напряжение питания ±15В и диапазон изменения входных сигналов ±10В.
Более низкие напряжения питания подразумевают меньшие диапазоны входных напряжений и, следовательно, большую чувствительность к разного вида помехам: шумам от источников питания, некачественным опорным и цифровым сигналам, электромагнитным воздействиям и радиопомехам (EMI/RFI) и, возможно наиболее важный момент - к некачественным методам развязки, заземления и размещения компонентов на печатной плате. В АЦП с однополярным источником питания диапазон изменения входных сигналов обычно отсчитывается вне связи с «землей». При этом проблема заключается в поиске совместимых усилителей с однополярным питанием для нормализации сигнала на входе АЦП и в осуществлении необходимого сдвига входного сигнала относительно «земли» в приложениях с непосредственной связью.
Несмотря на эти проблемы, в настоящее время доступны компоненты, которые обладают чрезвычайно высокими разрешающими способностями при низких напряжениях питания и малой потребляемой мощности. Этот раздел посвящен обсуждению проблемы создания приложений на базе таких компонентов и описанию методов успешного проектирования таких систем.
Наиболее популярные АЦП для приложений цифровой обработки сигналов (ЦОС) базируются на пяти основных архитектурах: АЦП последовательного приближения, сигма-дельта АЦП, АЦП параллельной обработки (flash), АЦП конвейерной обработки (pipelined) и АЦП последовательного счета (Bit-Per-Stage).
АЦП последовательного приближения
АЦП последовательного приближения много лет были главным инструментом преобразования сигнала. Недавние усовершенствования разработчиков расширили диапазон частот дискретизации этих АЦП до мегагерц. Использование методов внутренних коммутируемых конденсаторов вместе с методами автокалибровки расширяет разрешающую способность этих АЦП до 16 разрядов на стандартных CMOS-процессах без необходимости в дорогой тонкопленочной лазерной подстройке.
Этот АЦП выполняет преобразования в командном режиме. После подачи команды CONVERT START устройство выборки-хранения УВХ (SHA) устанавливается в режим хранения, и все разряды регистра последовательного приближения РПП (SAR) сбрасываются в "0", кроме старшего значащего разряда (MSB), который устанавливается в "1". Выходной сигнал регистра последовательного приближения (РПП) подается на внутренний ЦАП. Если выходной сигнал ЦАП больше, чем аналоговый входной сигнал, старший разряд РПП сбрасывается, в противном случае он остается установленным. Затем следующий старший значащий разряд устанавливается в "1". Если сигнал на выходе ЦАП больше, чем аналоговый входной сигнал, старший разряд РПП сбрасывается, в противном случае бит остается установленным. Описанный процесс поочередно повторяется для каждого разряда. Когда все разряды, в соответствии с входным сигналом, будут установлены в "0" или в "1", содержимое регистра последовательного приближения придет в соответствие со значением аналогового входного сигнала, и преобразование завершится. Если рассматриваемый АЦП имеет выход в виде последовательного порта, то последовательно поступаемые биты можно непосредственно передавать на выход. Основные элементы АЦП последовательного приближения представлены на Рисунокунок1.
Расчет характеристик радиолинии
Для передачи сигналов от передающей антенны (излучателя) к
радиоприёмной антенне в качестве линий передачи энергии часто используют
естественную среду. Линию передачи при этом называют е ...
Разработка усилительного устройства
Усилительные устройства находят применение в самых различных
областях науки, техники и производства, являясь либо самостоятельными
устройствами, либо частью сложных приборов и систем.
...
Стабилизированный источник вторичного электропитания
За последние годы резко увеличились темпы технического
прогресса, научно-технической революции во многих областях современной техники
и, прежде всего в радиоэлектронике и автоматике.
...