Разработка системы управления ГАП (РТК), механообработка

Сегодня можно с уверенностью утверждать, что направление технического перевооружения производства на основе гибкой автоматизации всех его процессов получило всеобщее признание в машиностроении. Комплексно-автоматизированное машиностроительное производство создает условия для одновременного достижения высокой производительности, сопоставимой с возможностями автоматических поточных линий, и технологической гибкости, обеспечиваемой ранее лишь непосредственным участием человека в производственном процессе.

Гибкие производственные системы (ГПС) получили пока наибольшее распространение в области обработки металлов резанием, что связано с большей подготовленностью этой области производства к внедрению гибкой технологии и автоматизации самих технологических процессов. Однако в последнее время разворачиваются работы в этом направлении в заготовительном и сборочном производствах. Создаются ГПС, включающие не только металлорежущее оборудование, но и литейное, кузнечно-прессовое, лазерное, сборочное и некоторые другие типы. Актуальной является проблема создания интегрированных производственных систем. Для этого необходимо решение ряда важных научных и инженерных задач создания технических и программных средств управления, измерения, контроля за ходом производственного процесса, диагностики, манипулирования обрабатываемыми деталями, конструирования инструмента, выбора технологической стратегии и др. Таким образом, проблема ГАП является многоплановой.

Применение ГПС обеспечивает распространение преимуществ массового производства, на серийное, что включает в себя повышение производительности, сокращение численности работающих и расхода фонда заработной платы, повышение качества изделий, возможности организации безлюдного производства в третью смену, сокращение времени пролёживания деталей, более быструю окупаемость капитальных вложений, сокращение времени сборочных операций и т.д.

Основными проблемами при создании и внедрении ГПС являются: контроль износа инструмента, что вызывает внеплановые потери времени на замену инструмента и необходимость проведения тщательного контроля обработанных деталей; удаление стружки из зоны обработки, особенно организация отдельного сбора стружки по видам обрабатываемых материалов; автоматический активный контроль размеров деталей в процессе обработки и т.д.

При обработке деталей типа тел вращения основным оборудованием в ГПС являются токарные станки с ЧПУ. Оснащение этих станков системой автоматического разделения пропуска, циклом резьбонарезания, подпрограммами обработки фасок и выточек, а также многоместными инструментальными магазинами, имеющими автономный привод, и устройство торможения шпинделя, превращает их в токарные многоцелевые станки. Оснащение ЧПУ запоминающими устройствами большой емкости позволяет быстро переналаживать станок на другие программы, что снижает подготовительно-заключительное время.

Обеспечение полностью автоматического и автономного цикла работы токарных станков достигается установкой накопителя заготовок, организацией их автоматической загрузки и разгрузки, а также контроля за состоянием инструментов и размерного контроля.

С целью наиболее эффективного использования станочного оборудования в ГПС необходимо, чтобы его производительность и технологические возможности охватывали различные типы производства изделий от мелкосерийного до крупносерийного, отличающегося ограниченной номенклатурой, большими партиями и сравнительно редкими переналадками по отношению к мелкосерийному производству. Поэтому тенденция к преимущественному использованию в ГПС одношпиндельных многоцелевых станков обоснована при малой серийности обрабатываемых деталей и частой переналадке. При увеличении серийности наиболее эффективно применять в ГПС многошпиндельные станочные модули с программным управлением.

Таким образом, применение ГПС и РТК обеспечивает: увеличение уровня технической вооруженности производства за счет автоматизации практически всех основных и вспомогательных операций; повышение производительности труда, в том числе за счет сокращения численности работающих; решение проблемы сокращения дефицита рабочих, выполняющих как основные, так и вспомогательные операции; изменение условий и характера труда за счет увеличения доли умственного и сведения к минимуму физического труда; сокращение в 2.3 раза численности обслуживающего персонала, работающего во вторую и третью смены; облегчение организации и обслуживания производства; повышение требований к квалификации обслуживания, диагностики и ремонта; создание условий для ритмичной работы предприятия и другие преимущества. [1]

система управление горячая штамповка

Задачей данной курсовой работы является разработка системы управления ГАП (РТК) для горячей штамповки. В качестве основного технологического оборудования было принято решение использовать обрабатывающие центры ИРТ180ПМФ4. В качестве вспомогательного оборудования были выбраны: автоматический склад СТАС-250 и транспортные тележки НЦТМ-25.

Автоматический склад стеллажного типа СТАС-250, изображённый на рисунке 1.1 обслуживается автоматическими кранами-штабелёрами. Для перегрузки тары с грузом с крана-штабелёра на накопитель (например, конвейерного типа) транспортной системы ГПС или в обратном направлении используются специальные приёмные секции стеллажа.

В состав данного автоматизированного технологического (складского) модуля входят: два каркасных стеллажа 1 с полками 2 для размещения тары с грузом; автоматический кран-штабелёр 3, перемещающийся по рельсу 4; приёмное устройство, выполненное в виде загрузочно-разгрузочного поворотного стола 5 с механизмом подъёма; устройство управления с пультом оператора 6; шкаф электрооборудования 7, который кабелем 8, подвешенным на кронштейнах 9, соединён с краном-штабелёром.

Кран-штабелёр состоит из колонны с грузоподъёмной платформой, на которой смонтирован выдвижной телескопический стол 10 для установки на нём тары 11 с грузом. По команде от системы управления на загрузку склада кран-штабелёр подаёт на приёмное устройство пустую тару или столы-спутники, которые загружаются заготовками, а затем транспортируются краном штабелёром в определённую ячейку стеллажа.

Рисунок 1.1 - СТАС-250

При поступлении команды на разгрузку склада кран-штабелёр забирает заготовки вместе с приспособлением-спутником или тарой из ячейки стеллажа, адрес которой задаётся системой управления, транспортирует и устанавливает их на стол загрузки-разгрузки. После окончания обработки по команде управления готовые детали с приспособлением-спутником (или в таре) снимаются штабелёром в заданную ячейку стеллажа.

На рисунке 1.2 показана безрельсовая транспортная тележка-транспортный робот (ТР) "Электроника НЦТМ-25". Особенностью данного ТР является оснащение его автономным источником питания, микропроцессорным устройством управления, обеспечивающим слежение за трассой в виде светоотражающей полосы, и загрузочно-разгрузочным столом, на котором устанавливаются тара и сменные столы-спутники с заготовками, деталями, инструментами или технологической оснасткой. ТР предназначен для автоматического перемещения названных изделий между складом-стеллажом, участками комплектования и ГПМ или РТК в составе ГПС для механообработки.

Рабочее место (станция) ТР содержит две стойки, симметрично расположенные по обе стороны трассы. На стойке автоматически устанавливается и с них снимается тара или стол-спутник при помощи подъёмного загрузочно-разгрузочного стола, смонтированного на тележке. Станция ТР оснащена датчиками типа конечных выключателей.

Тележка выполнена в виде шасси 1 с двумя ведущими колёсами 2, установленными на поперечной оси в центре шасси, и четырьмя опорными колёсами 3 на продольных осях спереди и сзади. Приводы 4 тележки смонтированы с двух сторон на шасси в его центральный части и связаны с каждым из ведущих колёс. Здесь же размещён привод 5 стола с подъёмными механизмами 6. С одной стороны тележки установлены аккумуляторные батареи 7, а с противоположной стороны - блок управления 8 со встроенной микро ЭВМ 9. Фотоэлектрические датчики 20 для слежения за трассой по светоотражающей полосе, нанесённой на полу, размещены с двух сторон в нижней части шасси. С каждой стороны тележки имеются упоры 11 с устройствами аварийного останова и фары 12. Контактное устройство 13 предназначено для автоматического подключения ТР к зарядному устройству. Для контроля перемещения тележки используются специальные устройства - измерители пути 14. Механизмы тележки сбоку и сверху закрыты кожухами 15 (на рисунке не показаны).

Рисунок 1.2 - Электроника НЦТМ-25

    Прочтите также:

    Спутниковые системы телефонной связи и передачи данных
    Спутниковая радиосвязь - это космическая радиосвязь между земными радиостанциями, осуществляемая путем ретрансляции радиосигналов через один или несколько спутников земли. Спутниковый ре ...

    Сети передачи дискретных сообщений
    Техника передачи дискретных сообщений играет все большую роль в жизни человеческого общества. Без нее немыслимо создание современных автоматизированных систем управления для различных от ...

    Расчёт схемы с операционным усилителем
    Рассчитать схему на операционном усилителе - неинвертирующий усилитель переменного тока. Исходные данные: № Вар-та Схема рис. RG1, кОм ...

    Основные разделы

    2019 © Все права защищены! >> www.techeducator.ru